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Abstract
Non-destructive testing& evaluation plays a crucial role in various sectors for testing the reliability of
materials. Of the different available non-destructive examination techniques, thermal non-destructive
testing provides fast and remote inspection of thematerials. Among various widely used thermal non-
destructive testing techniques, frequencymodulated thermal wave imaging gained its importance due
to its higher test sensitivity and resolution. The adoptedmatched filter approach on the obtained
temporal temperature distribution further concentrates supplied excitation energy into a narrow
duration high peak power pulse. In this paper, themerits of the reconstructed high peak power pulsed
data have been considered and emphasized in the context of independent component analysis. The
obtained results clearly indicate that pulse compressed data improves defect detectability, reliability,
memory usage, and computational complexity.

1. Introduction

Variousmaterials used in different sectors of industry such as aerospace, electronics, biomedical andmarine, etc
are prone to defects. These defectsmay occur during themanufacturing stage itself ormay induce over some
time due towear and tear of thematerial in use [1–3]. The defects need to be detected at the earliest to avoid any
mishaps in the future. Non-destructive testing and evaluation (NDT&E) techniques inspect thematerial without
disturbing its usefulness [1–3]. Active infrared thermography is one of the bestNDT&E techniques due to its fast
and remote testing capabilities. Active thermal wave imaging can be implemented in variousmodes, namely,
pulsed, step, and lock-in thermal wave imaging [3–7]. Nowadays, frequencymodulated thermal wave imaging
(FMTWI) is beingwidely used as it has themerits of pulsed aswell as lock-inmode of thermal wave imaging
[8, 9]. In FMTWI, frequencymodulated thermal waves from the heating sources impinge on the specimen
surface. The reflected thermal waves from the specimen surface are captured back by the infrared camera over a
period of time.Hence, FMTWIhas the capability of scanning a range of depths inside the specimen in one
experimentation period [10–12].

The data captured by the infrared camera is further enhanced using data processing techniques as defects are
not often visible in the captured raw thermographic data. These processing techniques can bewidely categorized
as time, frequency, and statistical domain processing techniques [13–15]. Statistical domain processing
techniques such as principal component analysis (PCA), independent component analysis (ICA), factor analysis
(FA), non-negativematrix factorization (NMF) and higher-order statistics (skewness and kurtosis), etc have
been recently implemented in the field ofNDT&Edue to their high data compression ability and enhanced
defect detection. Thermography analyses based on PCA andNMFwere applied on the defective specimens to
bring out the defect-related information in one of the components [16–18]. Higher-order statistics such as
skewness and kurtosis also compressed thermographic data into one image frame depicting the defects butwere
sensitive to the noise present in the data [19]. ICAhighlighted the defects present in the test specimens in one of
the estimated independent components in the case of infrared thermography and eddy current pulsed
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thermography [20–22].More recently, ICAhad been comparedwith PCA for its defect detection ability and
independent components provided a better signal to noise ratio for the defects as compared to the principal
components [21, 22]. The noise rejection capabilities ofmainlobe of the pulse compressed reconstructed
FMTWI datawere highlighted in the context of PCAbased thermography [23]. Present work highlights the
defect detectability by considering themainlobe of pulse compressed data instead of full data in context of ICA.

In this paper, amild steel specimen having six flat-bottomhole defects has been inspected using FMTWI.
The pulse compressed thermal data is obtained by pre-processing of FMTWI data using cross-correlation.
Further, the total data andmainlobe decay curve of reconstructed pulse compressed data have been processed
using ICA to ascertain the advantages ofmainlobe of reconstructed pulse compressed data in terms of defect
detection reliability, computational time,memory usage, and defect detectabilty considering signal to noise ratio
(SNR) of defects as afigure ofmerit. The effects of input parameters of ICA algorithmhave also been kept into
consideration during the analysis. Themathematical aspects of ICAhave been described in section 2. In
section 3, themethodology approach, including experimentation and processing techniques, has been detailed.
Section 4 discusses the results obtained, and then at the end section 5 concludes the paper.

2.Mathematical theory

Independent component analysis is based on blind source separationmodel. It decomposes the data into
different components that are statistically independent. The statistical independence of the components is
assessed based on themeasure of non-Gaussianity of the components or themeasure ofmutual information of
the components [24]. The ICA algorithms are designed to locate themaxima of independent components or to
locate theminima ofmutual information of independent components. Among different algorithmic
implementations of ICA, FastICA is one of thewidely used algorithms due to its computational efficiency owing
to thefixed point iteration scheme to locate themaxima of non-Gaussianity of independent components [25].
The captured thermographic dataD is assumed to be a linear combination of independent components C as
represented below in (1)

( )=D AC 1

Where. A is thematrix withweights for linear combination representation of the data. The independent
components inC are estimated using FastICA algorithmby locating themaxima of non-Gaussianity of
independent components. The estimation of independent components becomes faster if the data is whitened
before [25, 26]. Thewhitening transformation transforms the data in such away that the transformed data is
uncorrelatedwith unity variance. PCA is used for thewhitening of data before ICA. In the analysis, the number
of independent components (NOC), the data needs to be decomposed into, is decided beforehand. Similarly, as
PCA is being used as awhitening step, the number of eigenvalues (NEV) to be retained is also set before IC
estimation process to ensure a reliable representation of data by the retained eigenvalues. The effect of both these
parameters on the defect detection reliability has been discussed in Results andDiscussions section.

3. Experimental set-up anddata processing

In this experiment, amild steel sample has been considered as an inspectionmaterial. Six flat-bottomhole
defects at different depths are introduced in themild steel sample to test depth-resolved capabilities of the
processing techniques. Figure 1(a) describes the schematic dimensions of themild steel sample having sixflat-
bottomhole defects D1–D6 at different depths of 1.2 mm, 1.37 mm, 1.97 mm, 2.13 mm, 2.32 mmand 3.42 mm
respectively from the top surface of themild steel specimen. The top surface of themild steel specimen has been
inspected using FWTWI by illuminating the test specimenwith an incident heat flux having a frequency sweep
of 0.01–0.1 Hz for a duration of 100 s as shown in the experimental set-up infigure 1(b). The infrared camera
with a spectral region of 3–5 μmand spectral resolution of 320×240 has been used to capture the thermal
responses at 20 Hz sampling rate during during the active heating of the test specimen.

Further, amean zero thermal sequence is obtained by subtracting themean rise in the temperature from the
captured thermal responses at all the spatial locations of the test specimen. Pulse compression is then applied
over the obtainedmean zero thermal sequences to reconstruct the thermal data in such away to compressmost
of the vital information in themainlobe. Then, the processing technique ICA is explored over this pulse
compressed FMTWI data to test its efficacy on the full-length data and themainlobe of the compressed data.
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4. Results and discussions

As discussed in the previous section, the captured FMTWI data is pre-processed. The typical temporal
distribution of temperature at a location over amild steel specimen is shown in figure 2(a) and the typical
temporal distribution ofmean removed temperature at a location is shown infigure 2(b). Pulse compression by
cross-correlation concentrates the significant thermal information in amainlobe, as shown infigure 2(c). The
mainlobe decay curve is highlighted and represented as a zoomed-in region infigure 2(c).

The independent components have been estimated for the full duration of data comprising 2000 frames and
also formainlobe decay curve of the pulse compressed data consisting of 153 frames (only 7.65%of full data).

Figure 1. Schematic diagramof (a)Mild steel specimen having six flat-bottomhole defects (all dimensions are inmm) (b)
Experimental set-up.

Figure 2.Temporal distribution of (a)Temperature at a location on themild steel specimen surface (b)Mean removed temperature at
a location on themild steel specimen surface (c)Reconstructed pulse compressed data obtained by correlation highlightingmainlobe
decay curve.
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The obtained results have been compared in terms of various factors such as defect detection reliability,memory
usage, computational cost and defect detectability in terms of SNR as afigure ofmerit. The results are discussed
as follows:

4.1.Defect detection reliability
The selection ofNEV andNOCparameters in FastICA algorithmplays a crucial role in defect detection
reliability. The defect detection reliability has been analyzed by considering the IC estimation problem for
different combinations ofNEV andNOC. In this analysis, the values ofNEV andNOChave been chosen as
D/2nwhere n=0, 1, 2, 3,K. so on until D/2n reaches aminimal number. Here, D is a total number of frames
in the data. Considering its statistical nature, an ICA estimation for a particular NEV andNOCvalue has been
carried out forfive runs to assess the defect detection reliability for different combinations ofNEV andNOC.
The defect detection reliability in the case of full data is indicated in table 1, whereD=2000. Some boxes are
marked asNot Applicable (N/A) because such combinations do not exist asNOCcan only have value equal to or
less thanNEV. As it is shown in table 1, if all 2000 eigenvalues of the full data are retained then defects are not
detected for any of the values ofNOCand in any of the runs out of five runs. As theNEV is decreased to 1000,
500, and so on, then defects are visible only for few values ofNOC. It has been found out that very low values of
NOCare not able to detect defects. Defects are detectedwith full reliability onlywhen data is decomposed into a
higher number of components possible e.g., whenNOC=NEVorNOC=NEV/2. It is also to be noted that
estimating independent components involves considerable computation.Hence, a very large value ofNOC
accounts formore computation time.On the other side, when lower values ofNEV are selected, such as 15, 7,
and 3, then smaller values ofNOCenable reliable defect detection but at the cost of insufficient data
representation by less number of eigenvalues. So, it is tough to select a particularNEV andNOC combination
which provides reliable defect detection and is simultaneously computationally efficient too in case of full data.

On the other hand, the defect detection reliability for possible values ofNEV andNOC is shown in table 2 for
mainlobe decay curve data whereD=153.Here, the total number of frames is only 153 as compared to 2000 in
case of full data.Moreover,most of the significant information has been compressed into themainlobe of the
pulse compressed data, whichmakes themainlobe decay curve a very reliable representation of the data in a
compressed form. It can be seen in table 2 that almost every possible combination ofNEV andNOCprovides a
reliable option for detecting defects except at lowest value ofNOC.Otherwise, every other combination ofNEV
andNOC is reliable enough in terms of defect detection as defects are detected in all runs out of totalfive runs. In
general, the number of independent components required to be estimated is very less in the case ofmainlobe
decay curve as compared to full data hence involves very less computation time.

To compare both the cases of IC estimation in full data aswell asmainlobe decay curve data in terms of
memory usage and computational cost, one particular instance ofNEV andNOChas been considered.NEVhas
been chosen equal to one-fourth of total eigenvalues, andNOChas been selected equal to half of the value of
NEV. These particular values have been chosen as these valueswere able to detect defects for all the totalfive runs
in both cases of data. Table 3 represents the comparison between the IC estimation in case of full data and
mainlobe decay curve, which depicts 97.26% improvement in computational time and 92.28% improvement in
memory usage in case ofmainlobe decay curve over full data.

Table 1.Reliability of defect detection in independent components obtained by ICA in full data.

NEV D D/2 D/4 D/8 D/16 D/32 D/64 D/128 D/256 D/512

NOC 2000 1000 500 250 125 62 31 15 7 3

D2000 0/5 N/A N/A N/A N/A N/A N/A N/A N/A N/A

D/2 1000 0/5 5/5 N/A N/A N/A N/A N/A N/A N/A N/A

D/4 500 0/5 5/5 5/5 N/A N/A N/A N/A N/A N/A N/A

D/8 250 0/5 5/5 5/5 5/5 N/A N/A N/A N/A N/A N/A

D/16 125 0/5 2/5 5/5 5/5 5/5 N/A N/A N/A N/A N/A

D/32 62 0/5 0/5 5/5 5/5 5/5 5/5 N/A N/A N/A N/A

D/64 31 0/5 0/5 2/5 5/5 5/5 5/5 5/5 N/A N/A N/A

D/128 15 0/5 0/5 0/5 0/5 2/5 5/5 5/5 5/5 N/A N/A

D/256 7 0/5 0/5 0/5 0/5 0/5 2/5 4/5 5/5 5/5 N/A

D/512 3 0/5 0/5 0/5 0/5 0/5 0/5 1/5 1/5 1/5 0/5

Here, D stands for total number of image frames present in full datawhich is equal to 2000 image frames and ‘a/b’ indicates that all

the defects were detected for ‘a’ runs out of total ‘b’ runs.
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Figure 3. (a) Independent component image obtained for full data consideringNEV=D/4 andNOC=NEV/2 (b) Independent
component image obtained formainlobe decay curve data consideringNEV=D/4 andNOC=NEV/2 (c)Bar chart comparing
SNRof defects obtained in (a) and (b).

Table 2.Reliability of defect detection in independent components obtained by ICA in
mainlobe decay curve data.

NEV D D/2 D/4 D/8 D/16 D/32 D/64

NOC 153 76 38 19 9 5 3

D153 5/5 N/A N/A N/A N/A N/A N/A

D/2 76 5/5 5/5 N/A N/A N/A N/A N/A

D/4 38 5/5 5/5 5/5 N/A N/A N/A N/A

D/8 19 5/5 5/5 5/5 5/5 N/A N/A N/A

D/16 9 5/5 5/5 5/5 5/5 5/5 N/A N/A

D/32 5 5/5 5/5 5/5 5/5 5/5 5/5 N/A

D/64 3 1/5 2/5 3/5 3/5 3/5 3/5 5/5

Here, D stands for total number of image frames present inmainlobe decay curve data

which is equal to 153 image frames and ‘a/b’ indicates that all the defects were detected

for ‘a’ runs out of total ‘b’ runs.
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4.2.Defect detection quality
In the previous sub-section, strong data compression abilities ofmainlobe decay curve data have been
highlighted by interpreting the obtained ICA results in terms of defect detection reliability, computational cost,
andmemory usage. In this sub-section, the quality of defect detection in both cases of full data aswell as
mainlobe decay curve data has been assessed in terms of SNRof all the six defects as a figure ofmerit. For
comparison between full data andmainlobe decay curve data, IC estimation is considered for one particular case
where, NEV=D/4 andNOC=NEV/2 because of the same reason cited earlier. Figures 3(a) and (b) depicts
the independent component highlighting the defects obtained by ICAof full data andmainlobe decay curve
data, respectively. In quantitative terms, the SNRbar chart in figure 3(c) compares both cases.

Overall, the obtained independent component frommainlobe decay curve data provides almost similar SNR
of defects with respect to SNR values obtained in estimated independent component in case of full data.More
specifically, deeper defects D4,D5, andD6 exhibit better SNR in the case ofmainlobe.Whereas the shallower
defects D1,D2, andD3 have good SNR in case of full data itself because of their higher signal levels. Hence, the
mainlobe decay curve of pulse compressed data is beneficial to be considered for its better defect detection in
critical scenarios, involving test specimens with deeper defects.

5. Conclusion

This paper highlights the efficient data compression abilities of pulse compressed reconstructed FMTWI data in
the context of ICA. Themerits ofmainlobe decay curve data over full data have been ascertained by comparing
the results obtained by ICAon both. Themainlobe decay curve provides better defect detection reliability in
almost every combination case ofNEV andNOC.Also, IC estimation ismore efficient in terms of computation
andmemory usage in case ofmainlobe decay curve owing to less number of frames. Further, the better SNR
values for the deeper defects obtained in one of the independent components of ICA ofmainlobe decay curve
highlight the better compression abilities of pulse compressed data.
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